Transcendence of e^e

Author: Renzo Diomedi

The method here used to prove the transcendence of exp(e) is very similar to the one already used to demonstrate the transcendence of $exp(algebraic\ number)$ (1).

 $I(t) = \int_0^t e^{t-x} fx \ dx$ is a holomorphic function, differentiable over the complex numbers (2) in every point of its domain, and its integrand is a polynomial of a certain degree m, in which the exponent of the denominator slides all domain values [0,t]

Its input variables are conjugates indexed by a table r_s made of r=rows and s=columns compatible with the modular form (3)

We exploit all the properties of complex conjugation including those about the odd-degree polynomials, in accordance with the complex conjugate root theorem.

We assume $t = \cos(k\theta) - i\sin(k\theta)$, i.e. a conjugate in polar form, with k integer. Each of the infinite values that θ_{θ} can assume, is closely related to π or its multiple or its fraction. For this reason we must assume that the value of the multiple or the value of the fraction of π can also be non-algebraic. Then e^{θ} returns algebraic values, (4)

Integrating by parts and assuming y = t - x; d(-y) = dx, we get: $-e^{-y} f(t-y) + \int_0^t e^{-y} f'(t-y) dy$ then $[-e^{-y} f^j(t-y)]^{t-0}$ then $I(t) = -e^{-t} \sum_{j=0}^m f^j(0) - \sum_{j=0}^m f^j(t)$

with m = degree of f and $f^j = \text{j-th derivative of } f$.

Let a symmetric polynomial
$$a_0 + a_1 e^{-i\theta} + a_2 e^{-2i\theta} + \cdots + a_n e^{-ni\theta} = f_h = \prod_{q=1}^n (e^{-ik\theta} - wx_q)^p / (e^{-ik\theta} - wx_h)$$

with degree np-1, with $h \in [q]$, $1 \le q \le n$, $0 \le k \le n$, and p is a Prime sufficiently large. q are distinct algebraic complex conjugate linearly independent. Appropriate coefficients q_k and q_k make q_k root of q_k

This polynomial is never negative.

Then we use next polynomial with a_0, \dots, a_n integers non-zero, to verify the possibility of existence of an algebraic result $J = a_0 I(0) + a_1 I(1) + \dots + a_n I(n) =$

$$\sum_{k=0}^{n} a_k I(k) = \sum_{k=0}^{n} a_k \left(\sum_{j=0}^{m} -e^{eik\theta} f^j(0) - \sum_{j=0}^{m} f^j(e^{-ik\theta}) \right) = -\sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^j(e^{-ik\theta})$$
 (derivative of $f(0) = 1$ = null).

Considering that $f^{p-1}(0) = (p-1)!$ by p-1 derivations, and assuming $X = e^{-ik\theta} - x_q$, we can extract from f, by p-1 derivations, the polynomial $X^{(n-1)p}((p-1)! + (n-1)p!)$, then, the minimal polynomial (p-1)! $X^{(n-1)p}$ is divisible by (p-1)! and it follows that |J| > (p-1)!

Considering that a, n and t have not infinite values, so a is defined in a bounded set, therefore there must be a number greater than a. This number could be an arbitrary a and a be a set of a. So we have :

$$|J| > (p-1)! > c^p > |J|$$

- (1) let us avoid the immediate and trivial demonstration : $e^e = e^{n+1} = e^{algebraic number}$
- (2) The use of complex numbers ensures that every non-constant polynomial has a root, since the Fundamental Theorem of Algebra states that every non-constant polynomial with coefficients in C, has zeros in C, false in R (typical instance: x^2 has zero in complex numbers only).
- (3) a redundance of complex numbers in upper half-plane in which each point of each of the two axes is intersected by a two-dimensional table composed of complex numbers, id est an object in four spatial dimensions, which returns only positive values, not drawable on graph.
- (4) So, we get *exp(algebraic number)* again!